

Conference on Energy Efficiency in Captive & Waste Heat Recovery Power Plants

23 & 24 May 2024 HICC, Hyderabad MAKE INDIAN CPPs SUSTAINABLE AND WORLD CLASS IN GREEN

Thematic areas :

- Technological Advances in CPP & WHR
- Sustainable Energy Practices
- Green Energy Mix
- Shift Towards Renewable Energy & Alternative Energy Sources
- Emission Reduction and Sustainability Goals
- Resilience and Reliability of CPP & WHR

Best Practices in Captive Power Plants

23 & 24 May 2024 HICC, Hyderabad

CII – Godrej Green Business Centre

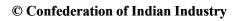
CII – Green Business Centre, Hyderabad

- India's first Platinum rated Net-Zero building
- Use bi-facial solar panels generating 10% more than demand

Key Activities

- **Green Buildings**
- 2nd Largest footprint in the world
- 92% of Green **Building Footprint** in the country

- 10.26 billion ft² of First of its kind in the world
 - > 1000 companies involved
 - USD 400 million
 - annual recurring
 - savings


- 6,400 + green products certified
- >90% of Building
 - Materials are under GreenPro

- 2,000+ energy audits and largest energy auditors
- **100+ projects in energy**
 - efficiency, climate mitigation and RE

- Accelerating the growth of innovative **Clean Technology** startups
- > 25 Startups part of cohort

Overview of Indian Captive Power Plant

Importance of Energy Efficiency in Captive Power Plants

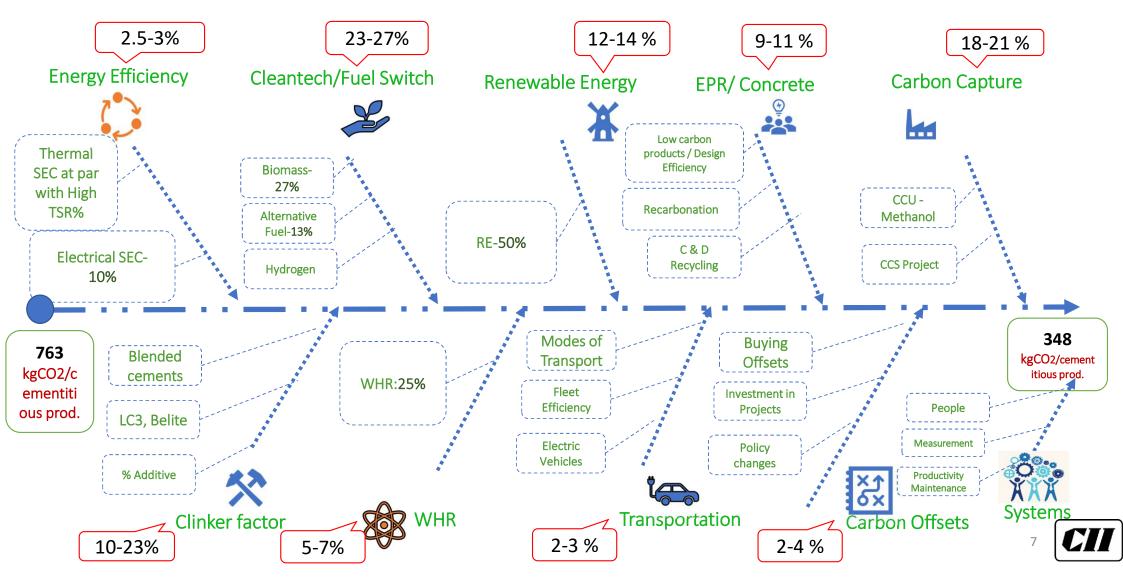
Boilet

India's Total Installed Capacity–399.496 GW (excluding CPPs)

✤Total Installed Capacity of CPPs in India – 78.508 GW (as of March 2021)

Equal to 19% of total installed power in India

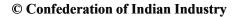
Considering an average gross heat rate of 3208, 50% coal based, PLF of 50%, GCV – 3500 kCal/Kg


Annual Coal Consumption ~ 100 million tons

✤1 % improvement in net heat rate would result in an annual savings of 1 million tons of coal consumption © Confederation of Indian Industry

Efficient Captive Power Plant

Deep Decarbonization Roadmap-2MTPA model Cement Plant



Benchmarking of Performance Parameters of 15 MW

SI. No	Parameters	UOM	Plant 1	Plant 2	Plant 3	Plant 4	Plant 5	Plant 6
1	Installed Capacity	MW	15	15	17.5	15.7	17.5	18
2	Туре		AFBC	AFBC	AFBC	AFBC	AFBC	AFBC
3	PLF	%	82.3	65	84	71	77.8	84.05
4	Heat Rate	Kcal/Kwh	3250.3	3348	3018	3065	3035	3161
5	APC	%	7.97	9.1	9.3	8.52	9.69	7.5
6	Coal GCV	Kcal/Kg	5268.8	4062	3213		3175	

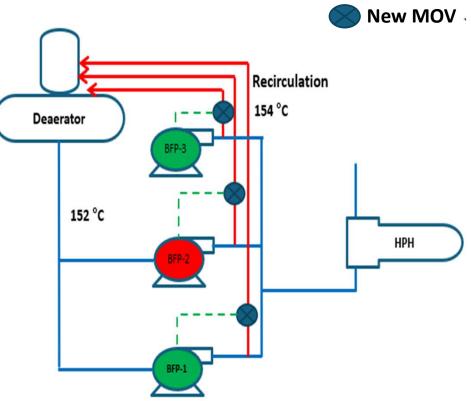
Benchmarking of Performance Parameters of 25 MW

SI. No.	Parameters	UOM	Plant 1	Plant 2	Plant 3
1	Installed Capacity	MW	2 x 25	2 x 23	2 x 23
2	Туре		CFBC	CFBC	CFBC
3	PLF	%	97.4	75.41	77.71
4	Heat Rate	Kcal/Kwh	2932	3036	2968
5	APC	%	9.51	9.54	11.78
6	Coal GCV	Kcal/Kg	6475		

Equipment Wise Benchmarking of Major Equipment's

Equipment Wise Benchmarking of Major Equipments

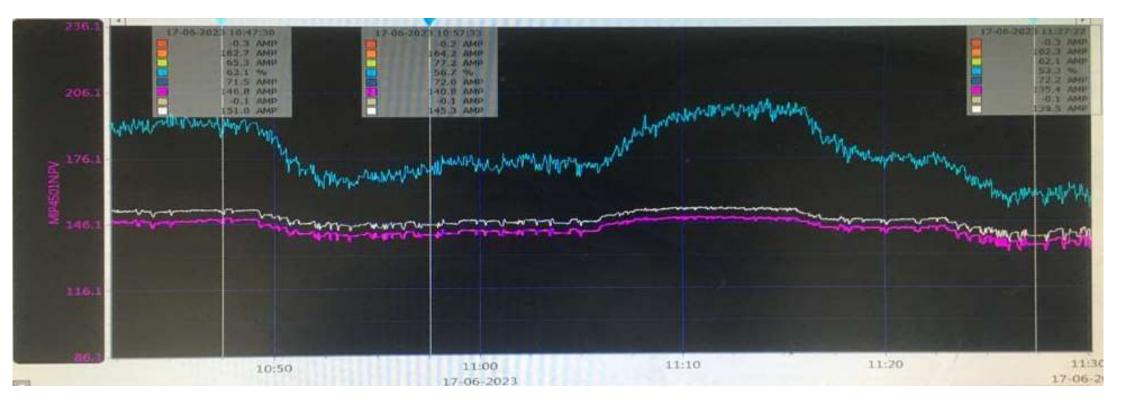
Sr. No.	Parameters	Country Best
	UOM	KW/MW
1	Boiler Feed Pump	15.58
2	ID Fans	1.73
3	PA Fans	2.58
4	FD / SA Fans	11.18 / 10.61
6	CWP	14.59
7	СЕР	1.17
8	ACW	1.43
9	Compressors	2.84


10	Instrument Air Pr	5 Kg/cm ²
11	Service Air Pr	2.35 Kg/cm ²

Best Practices in Captive Power Plant & WHRS

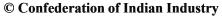
1. MOV in BFP ARC Line for Avoiding Recirculation

- Observation:
 - ✓ Three feed water pumps installed
 - Two pumps are running & one pump stand by mode for the operating load
 - ✓ BFP Recirculation valve found to be passing
 - Power loss due to recirculation of water
 - Potential to save power by maintenance / replace of ARC valve



Trail with manual isolation valve open/close condition

	lation Valve tion	Time	BFP 1 current (amp)	BFP 2 current (amp)	FCV %	Pump power (kW)
BFP 1	BFP 3		(amp)	(ump)		
Open	Open	10:47	148.3	152.6	64.0	1747
Close	Open	10:59	142.7	147.4	58.3	1684
Close	Close	11:27	135.4	139.5	53.3	1596
					Diff	151



MOV Installation at other units

680.56 KPs

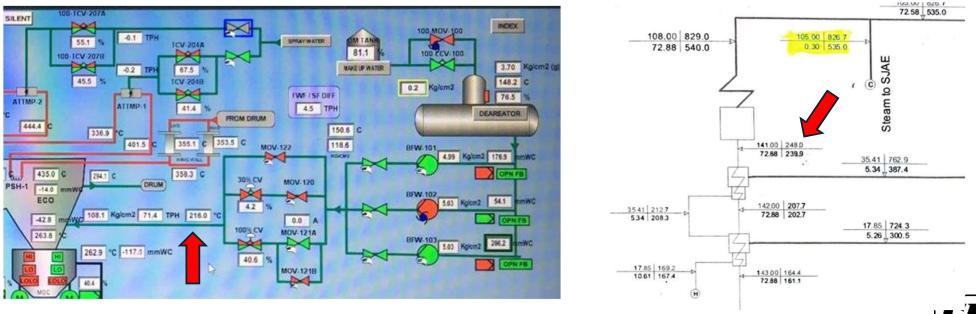
1877. 53 mm

Recommendation

- ✓ Possible reason for passing in the recirculation line
 - Chances of wear out of the valve during operation
 - Over a period, the opening percentage increases during full valve close condition and Increases the recirculation quantity
- ✓ Install MOV after the Manual isolation valve
- ✓ Interlock the MOV with BFP pressure, flow & speed (Suitable protection logic)

Saving potential

- \checkmark 9% recirculation is observed, and savings are estimated
 - 150 kW (Considering 2 pumps)



2. Increase the Boiler Feed Water Temperature and Operate as per HMBD

Observations

- Presently turbine is running at 17 to 18 MW load
- **The feed water temperature at HPH-2 outlet is 214 deg c**
- **As per HMBD the HPH-2 feed water outlet temperature is 240 deg c**

© Confederation of Indian Industry

Observations

- The HPH-1 & 2 extraction steam line MOV found to be throttled considering high specific steam consumption
- However, the heat rate is found to be high

SI.NO	DESCRIPTION	UOM	ACTUAL	DESIGN	REMARKS
1	HP heater 2 o/l FW Temperature	Deg C	216	239.9	From DCS
2	HPH 2 flow	ТРН	3.5	5.4	Auto calculated
3	TTD	Deg C	33.0	3.3	Auto calculated
4	DCA	Deg C	7.4	5.6	Auto calculated
5	FW temp rise	Deg C	26.3	37.2	Auto calculated
1	HP heater 1 o/l FW Temperature	Deg C	189.7	202.7	From DCS
2	HPH 1 flow	ТРН	4.7	5.2	Auto calculated
3	TTD	Deg C	23.9	4.0	Auto calculated
4	DCA	Deg C	10.8	8.7	Auto calculated
5	FW temp rise	Deg C	41.5	44.0	Auto calculated

Observations

				MS	FW		Sp steam			Fuel	Fuel
S.no	Condition	TG load	MS flow	temp	temp	THR	cons	Blr eff	GHR	GCV	cons
		MW	ТРН	deg c	deg c	kcal/kW	kg/kW	%	kcal/kW	kcal/kg	МТ
1	100 TMCR	18	72.88	535	239.9	2342.3	4.05	89.5	2617.1	5700	8.26
2	HPH-2 out	18	69.57	535	205	2382.4	3.87	89.5	2661.9	5700	8.41
3	HPH-1 out	18	73.02	535	235.2	2367.9	4.06	89.5	2645.7	5700	8.35
4	LPH out	18	73.99	535	240.5	2375.2	4.11	89.5	2653.9	5700	8.38

As per HMBD analysis, if the HP heater is out

- The specific steam consumption decreases
- The heat rate increases

More the steam drawn

- higher the feed water temperature
- Lesser the latent heat loss in the condenser

Recommendation

- Increase the feed water temperature by
 - maintaining the deaerator pressure as per HMBD
 - Reducing the throttling of MOV in the extraction steam line
- Maintain the feed water temperature as per HMBD
- Heat rate saving potential -Expected
 - 26 kcal/kW

		Present	Proposed
HPH-1 inlet temp	Deg c	148.2	158.7
HPH-1 outlet temp	Deg c	189.7	202.7
HPH-2 inlet temp	Deg c	189.7	202.7
HPH-2 outlet temp	Deg c	216	239.9
Additional steam flow req in HPH-1	ТРН		1.6
Additional steam flow req in HPH-2	ТРН		1.38
Additional MS steam flow req	ТРН		2.2
MS steam flow	ТРН	71.9	74.2
THR	Kcal/kW	2565	2530

3. Energy Efficient Boiler Feed Water Pump

CII

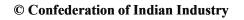
Observation:

- Three feed water pumps are installed (2W + 1S)
- **The design efficiency of the pump is 62.2%**
- Rated power is 508 kW for a flow rate of 83.75 m3/hr
- Pump operating power is 400 to 450 kW/pump for a flow rate of 70 m3/hr
- There is good potential to optimize the pump power consumption by selecting of suitable large-capacity pump with head and flow

Recommendation

- Installed new energy efficient pump with the efficiency >75 % with optimized head & flow, (539 kW, 130 m3/hr, 1300 m)
- Energy saving potential: 200 kW

SI.No	BFP	Unit	Old Pump (2 X 60 %)	New Pump
1	Flow (Q)	M3/hr	83.75	130
2	Head (m)	m	1725	1300
3	Power (kW)	kW	508	539
4	Efficiency (%)	%	63	75.8



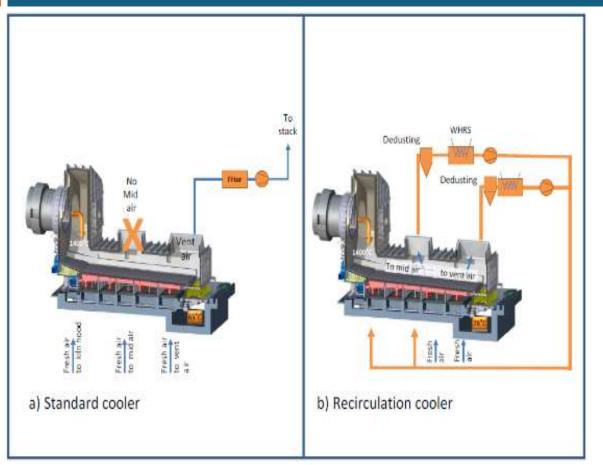
4. HP Heater Replacement to Increase the Feed Water Temperature

Case Study:

- HP Heater outlet feed water temperature was less than 6 to 8 deg C the design temperature
- The reason for the temperature is due to the HP heater heating surface area
- Installed the new HPH with a higher heating surface area of 227m² against the old 127m² with approach <2.5 deg C & DCA <5 deg C. and with existing steam and feed water connection</p>
- Plant achieved the reduction in the heat rate of 23 Kcal/kW of 27 MW Plant

5. Drip Transfer Pump Installation

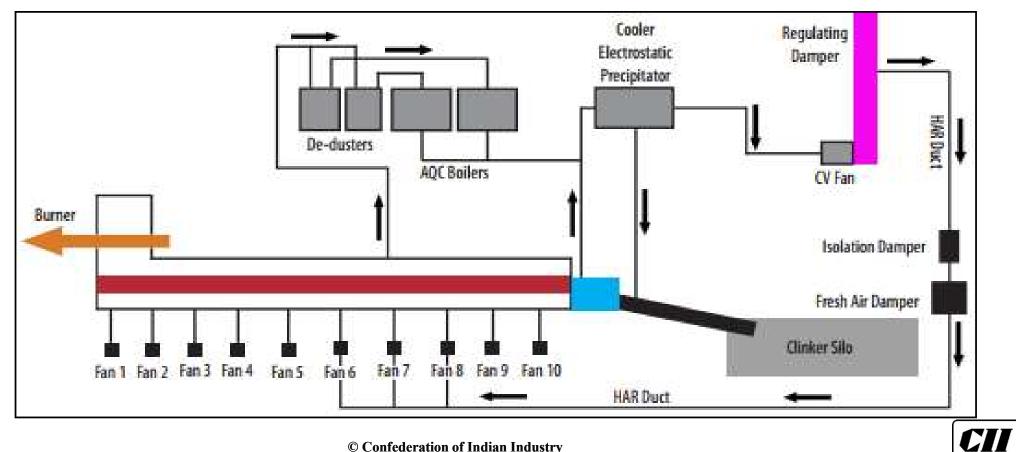
Case Study:


- LP Heater drip temperature was around 110 deg C. Drip hot water was going to the air-cooled condenser duct and some portion of it was converted into steam and the rest water of 60 deg. Due to this flash steam is increasing the load on the condenser.
- A drip transfer pump was installed and drip hot water is being injected into a condensate pipeline at the outlet of the LP Heater.
- 15 kcal/kW is achieved on total plant heat rate and reduction on the condenser load and improved vacuum.

6. Cooler boiler exit gas recirculation for Enhancement in WHRB output

Cooler boiler exit gas recirculation for Enhancement in WHRB output

© Confederation of Indian Industry

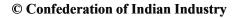

 Conventional AQC Boiler arrangement

- Hot gas input to boiler from mid air tapping and cooler vent air
- □ Gas from boiler is vented to atmosphere at 110-130°C
 - In some cases goes as high as 145 °C
- Hot air recirculation from cooler ESP vent stack
 - Part of hot vent air is recirculated back to middle fans
 - □ Increases temperature of mid air
 - Increase in generation from AQC side boiler

Cooler boiler exit gas recirculation for Enhancement in WHRB output

Hot air recirculation from cooler vent stack to middle fans

Innovative Project


Installation of Hot Air Recirculation in Kiln-II to generate more green power

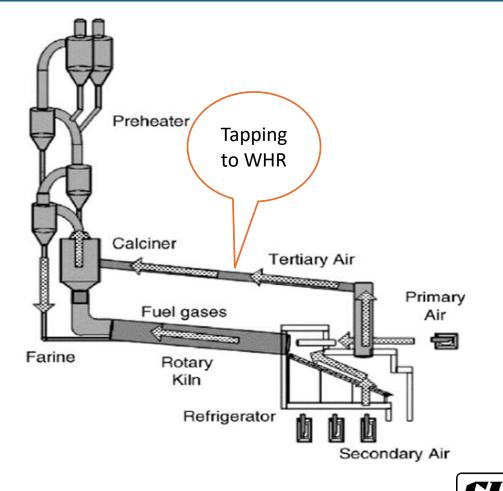
Duct From CV Stack

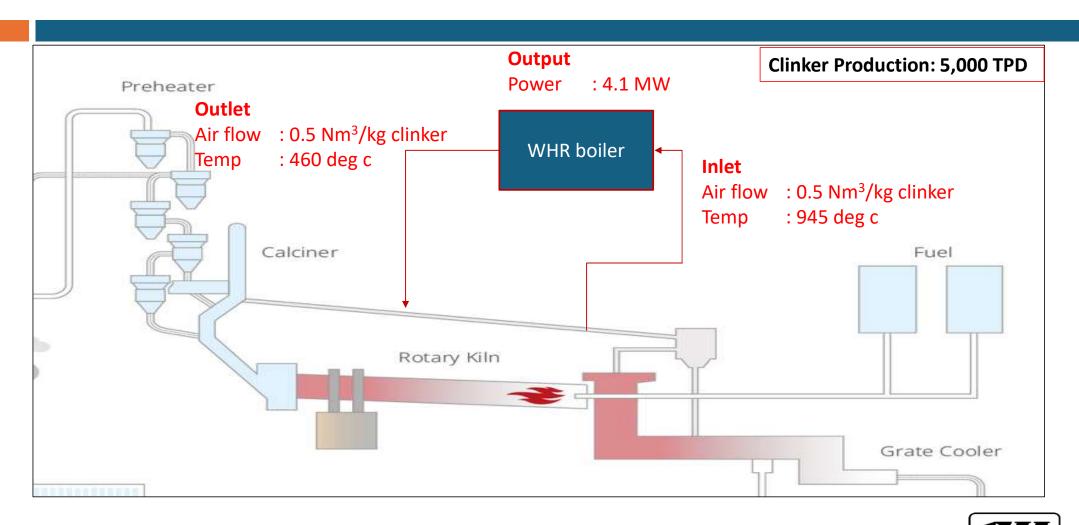
Entry At Fans

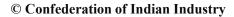
- Hot Air Recirculation in Fan Nos.6, 7 & 8
- Commissioned in January 2018
- Gross Power Generation Increased by 9,500 Units/Day
- ✤ Reduction in Green House gases 12,085 Kg CO2/Day.

Cooler boiler exit gas recirculation for Enhancement in WHRB output

Benefits achieved from Hot Air Recirculation (HAR)- 5,000 TPD

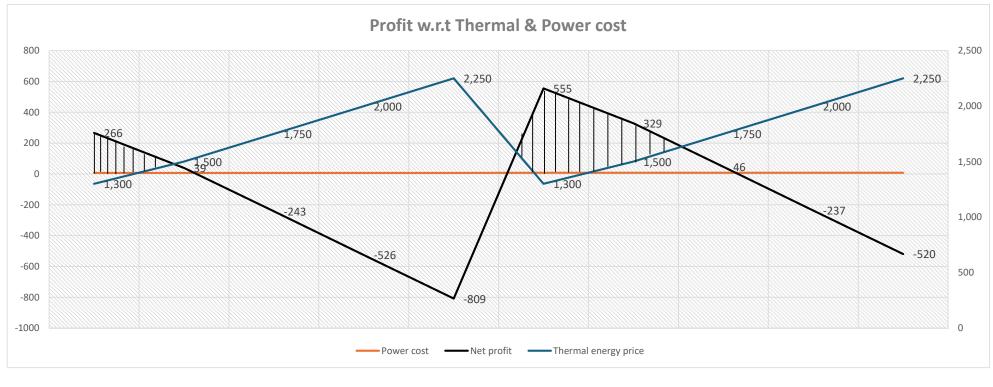

•			Without	D:((Particulars	Units/Day	
Parameters	Unit	With HAR	HAR	Difference	Increase in Power Generation from	kW	9,500
Mid Air to Boiler	٥C	410	390	20	WHR System		
	Ţ	.10		_0	Reduction in Green House Gases	kg of CO ₂	12,085
HAR Temp	°C	130	30	100			
			121	22	Cost Benefit Ana	ılysis	
Clinker Temperature	°C	144	124	20		71 / 18 7	
Total Steam Generated	t/hr	27.23	24.72	2.51	Total units generated : 31,35,000 kV	vh/Year	
					Total Savings : 17.24 Million	n/Annum (@5.5	Rs/kW)
Total Power Generated	MW	4.54	4.12	0.42	Total Investment : 22.2 Million		
Total Power Generated	kWh/day	1,08,920	98,880	10,040			
L		L	L	L]	Payback Period : 15 Months		





Tertiary air tapping

- **Tapping from TAD duct**
- **Temp** 800 to 1,000°C
- Flow 0.5 to 0.6 Nm³/kg clinker
- **Boiler exit temp 450 to 500°C**



Impact of WHRB with Tertiary Air											
т	AD		1								
TA temp WHRB inlet	Deg C	945									
TA temp Calciner inlet	Deg C	460									
TA flow	Nm3 / kg clinker	0.5									
Clinker Production	TPD	5,000									
Heat fed to WHRB	Kcal /hr	1,61,66,667	,								
WHRB cycle efficiency	%	22									
Power generated	MW	4.1									
Increase in Sp. Heat consumption	kcal /kg clk	78									
Thermal energy price	Rs /Mkcal	1,300	1,500	1,750	2,000	2,250	1,300	1,500	1,750	2,000	2,250
Power cost	Rs /kWh	6	6	6	6	6	7	7	7	7	7
Additional thermal energy	Lakhs /annum	1,471	1,698	1,980	2,263	2,546	1,471	1,698	1,980	2,263	2,546
Power cost saving	Lakhs /annum	1,737	1,737	1,737	1,737	1,737	2,026	2,026	2,026	2,026	2,026
Net profit*	Lakhs /annum	266	39	-243	-526	-809	555	329	46	-237	-520

Note: Benefit on tertiary air for power generation will vary with respect to thermal and grid electricity cost.

Profit zone

© Confederation of Indian Industry

Contact:

Venkatesan K

CII - Godrej Green Business Centre, India

k.venkatesan@cii.in +91 9042095497

Together for a Low-Emission World!

THANK YOU !

For any queries related to energy efficiency log in @

http://energy.greenbusinesscentre.com/sup/

For latest updates on energy efficiency please visit

http://www.energy.greenbusinesscentre.com/

cii--godrej-gbc

